
Journal of Statistical Physics, Vol. 91, Nos. 5/6, 1998

1. INTRODUCTION

The purpose of this work is to explore the mathematical properties of a
model introduced in ref. 11 to describe dissipation mechanisms leading to
the linear response theory for electronic transport in periodic or aperiodic
homogeneous media. Once this model is accepted, KUDO'S formula can be
proved rigorously and the linear response theory can be justified. In this work,
we will describe the general formalism and restrict further investigations to
the case of the relaxation time approximation (RTA). We will leave the more
detailed descriptions needed at low temperature for a forthcoming work.

The main idea is the following: in first approximation, the conduction
electrons in a solid are considered to be individual particles (electrons or
holes), with no interactions between them, neither with any other type of
particles, except for the quenched potential created by the fixed nuclei. This
approximation led in the late twenties to the band theory for perfect
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crystals that was very successful in understanding the electronic properties
of solids. Here we just add the possibility of having the electron mov-
ing in some aperiodic crystal. This is what happens in quasicrys-
ta|S)d7,54,i4,38,53,27) fa sijghtly disordered systems*3'57-58-1'34' such as
amorphous metals and strongly doped semiconductors and also in strongly
disordered systems such as impurity bands in lightly doped semiconductors
at low temperature/52' This latter situation occurs on the plateaus of the
integer quantum Hall effect (IQHE).(33'59'7'5'11'42) Instead of introducing a
many-body theory to describe the exchange of energy with other types of
excitations, the charge carriers are supposed to experience some random
quantum jumps, called collisions in this article, at random times. We will just
give few examples of possible choices for such processes here, leaving a
more systematic description for a forthcoming work. The linear response
theory is recovered by a time average of the instantaneous quantum evolu-
tion. This averaging introduces a loss of information liable to describe
dissipation.

The idea behind this model is not new. As early as 1900, Drude(20)

introduced it in a classical kinetic theory describing the electron gas. Since
then it was used in many works such as the Kubo-Toyabe model for
nuclear magnetic resonance.(24) It is also very similar to Boltzmann's
kinetic theory (see ref. 29 for instance). This method has recently been the
focus of attention in quantum optics because it provides a convenient tool
for numerical calculations of optical response by means of Monte-Carlo
simulations/40'22' In this context, it is related to the old idea of Einstein(21>

according to which individual quantum systems experience quantum jumps
from one state to another when absorbing or emitting energy. In solid state
physics, by analogy, electrons or holes are absorbing or emitting other
excitations present in the solid, especially phonons.

The RTA consists in summarizing all dissipative effects into a unique
parameter, the relaxation time, describing the effective average time
separating two consecutive collisions.'4'

Despite the coarseness of this approach, one can already say some-
thing non trivial with it. In particular, one can derive Kubo's formula on
a rigorous mathematical ground and justify the validity of the linear
response. Applied to the IQHE,(11) it gives a rough estimate of the plateaus
accuracy and provides a qualitative explanation of the interplay between
the strong localization and the mobility of the sample. In the case of
aperiodic media, the quantum evolution of an individual electron or hole
may cause the usual Drude formula to fail even in the RTA.(12'50>51) The
reason is that quantum interferences may slow down the wave packet in an
unusual way. This has been used recently as a test of Aubry's duality for
two dimensional Bloch electrons in a uniform magnetic field.'6'
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The RTA is, however, too rough to take into account low temperature
effects. This is the main criticism against the RTA in ref. 11 to estimate the
accuracy of the Hall plateaus in the IQHE. For indeed, the variable range
hopping mechanism,'521 proposed by Mott(39) to describe the low tem-
perature conductivity of insulators, introduces a prefactor in the direct
conductivity decreasing the error by at least four orders of magnitude. This
is crucial to explain why the Hall conductance measurement provides a
new standard of resistance.<56> To go beyond the RTA, we must consider
that the test particles undergoes several kinds of quantum jumps, each of
which with its own time delay. This will be developed elsewhere.

The article is organized as follows. In this chapter, we motivate the
model for transport as well as the mathematical description of aperiodic
homogeneous media and then present the main results of the article, that
is the Kubo formula with dissipative term and the anomalous Drude for-
mula. In Chapter 2, we give a more detailed mathematical description of
the model and discuss its physical validity. In order to make the physical
content of the chapter more transparent, we again only give elementary
and short arguments of some crucial points. In Chapter 3, the mathemati-
cal formalism needed for treating time dependent external fields is
described and the main results are proved.
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1.1. No-Go Theorems

When trying to compute the current of a system of independent
charged classical or quantum particles submitted to an external electric
field / without possibility to dissipate, one immediately runs into the
following dichotomy: the conductivity is either zero or infinite. If the one-
particle Hamiltonian H is given by p2/2m, then every particle is continu-
ously accelerated and the current is infinite. If the Hamiltonian is bounded,
then the time averaged current projected in the direction of the electric field
vanishes (see ref. 11 and Proposition 6 below). For indeed, the current is
defined as J = q dx/dl where q and x are the charge and the position of the
carrier. Let 1£A(B) = {A, B] define the Liouville operator acting on observ-
ables by means of the Poisson bracket. Then ](t) = e's>H-t*-s()) if a DC
electric field / is added. The time average of the current is given by

No t ing  t ha t  / - J ( t ' )= -^ H _q / . x ( H( t ' ) )= - dH/d t \  we  ge t



whenever H is bounded. When transposed to quantum mechanics ( { A , B]
is replaced by i[A, B]/h), the same argument shows that the conductivity
computed in this way always vanishes for a lattice Hamiltonian no
matter whether it is periodic or not! For a periodic Hamiltonian, this
phenomenon is well known in solid state physics as Bloch oscillations.'28'
An extension of this result to AC fields is proved in Proposition 6 in
Chapter 3.

The reason for these results to hold is the absence of dissipation
mechanisms. In solids, dissipation is due to exchange of energy and
momentum with other type of excitations, mainly with phonons. These
interactions will be modeled by a random collisional process. In order to
motivate our approach and to explain its kinetics, we recall next the Drude
model of classical.

We consider a model of classical, non relativistic, free particles of mass
m and charge q. The Hamiltonian of such a particle is H = p2/2m where p
is its momentum. We assume that a test particle is scaterred at random
times (t/)/eZ with tt< t,+ l such that the time delays /,— tl_l between colli-
sions be independent, identically distributed random variables with com-
mon distribution dt/r exp( — t/x) on [0, co). At each collision, the direction
of the momentum is changed randomly according to the uniform distribu-
tion on the (d— l)-sphere, but its modulus is conserved. Each collision is
stochastically independent from the others. If we denote by R, the random
rotation acting on p at the time th the phase space orbit of a test particle
is computable entirely in terms of the random sequence £, = (//, Rt)isZ. We
will denote by E4 the ergodic average over the random variable ^. Using
Birkhoffs ergodic theorem, the time averaged current can be computed as
in (1) to give:
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1.2. Drude's Kinetic Theory

Let n be the particle density. The conductivity a is defined as the linear
coefficient of the current density nE4«J» with respect to the electric field.
As a consequence, it is given by the Drude formula



Note that, during each collision, there is a momentum transfer from the
particle to the scatterer, but no energy transfer in this model (elastic colli-
sions). Although this is sufficient to calculate the mean current, a closer
look shows that the particle gets faster and faster, namely E{(/?2(/))«
2q2S2tt. This undesired feature goes along with the impossibility to treat
the Joule effect in the present model. Actually, Drude's formula results from
the limit and averaging procedure in (3).

We can take the Joule effect into account if we allow for energy
transfer from particles to scatterers during each collision. The scatterers are
supposed to form a bath at temperature T. We suppose that the outcome
of the collision at time t/ is characterized by a momentum transfer dp, dis-
tributed according to Maxwell's law with temperature T. One obtains the
same Drude formula. But the energy of the particle is bounded and there
is Joule heating of the scatterers with an energy transfer pet unit time given
by W=q2S2i/m. This second model was proposed by Drude in 1900,(20)

whereas the model with elastic collisions could be referred to as the sim-
plified Lorentz model.'35'

A complementary way to look at the collision process above is to
study the diffusion of a particle in absence of an external electric field. One
then considers the mean square displacement:

1.3. A Kinetic Quantum Model in a Perfect Crystal

If one considers electrons in a perfect crystal, the Drude kinetic theory
leads to several problems when compared to experimental results (see
ref. 4, Chapt. 1-3 for a complete discussion). Right after the discovery of
Pauli's principle, Sommerfeld introduced the quantization of free electrons
to improve upon Drude's theory. However, electrons in metals are not free
and band theory, developped by Bloch and Brillouin, is necessary.'I6) This
theory leads to the notion of "holes" playing the role of a positively
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where D = kBTT/m is the diffusion coefficient and kB is the Boltzmann con-
stant. In other words, the motion is diffusive, a necessary condition to get
the Ohm law. In this case the Einstein relation a = q2nD/kg T between con-
ductivity and diffusion coefficient is satisfied.

A generalized version of the Drude model allowing to study the
kinetics of anomalous transport was considered in ref. 49. There it is
shown, in particular, that replacing the exponential law for the time delays
by another law only changes some numerical constants in the above
formulae as long as this law has a finite second moment.



charged particle carrying the current. Furthermore, the current is carried
only by electrons or holes with energies within (9(kBT) from the Fermi
level EF. Hence the effective Hamiltonian describing the current carrying
particles can be seen as a matrix of operators HeS=(Hn_„.)„,„• eB in which
B is the (finite) set of bands intersecting this energy interval. Each matrix
element can then be seen as a bounded self-adjoint operator acting on the
/2-space of the lattice describing the equilibrium positions of the atomic
nuclei. This is the so-called tight-binding representation. A complete mathe-
matically rigorous justification of this approach is available (see ref. 8 for
instance).

Following closely the Drude approach, one can construct a kinetic
model for quantum transport as a first step towards a more accurate
description of the interactions. The various sources of interactions, such
as impurity, electron-phonon or electron-electron scattering, are then
described through collisions occuring at random times ( / / ) / E Z with
• • • ?/_ i < t, ^ • • •. This description is valid provided the number of collisions
per unit of time is small enough, namely the interaction with the corre-
sponding particles can be considered as a small perturbation.

We will assume again that the collision times are Poisson distributed
with an averaged collision time T = <?/ — / / _ i > . At each collision, the
charge carrier is randomly kicked with some energy and quasi-momentum
exchange. Between collisions, however, the charge carriers evolves
according to the perfect crystal Hamiltonian, with possibly the addition of
the potential energy Fext(0 created by (possibly time-dependent) external
forces such as an electromagnetic field. In the Schrodinger picture, this
leads to a Hamiltonian of the form

Here, the ff,'s will be a set of random operators, that one can assume
to be selfadjoint, bounded, stochastically independent and identically
distributed. This kinetic model was proposed in ref. 11 in order to derive
rigorously the Kube formula for the IQHE. The evolution of wave packets
is easily computable: the wave function immediately after a kick is given by

Therefore, it is easy to compute the current in the limit of small external
forces (linear response theory) and to control the correction terms.

The outcome of this model depends essentially upon the assumptions
made on the common distribution of the W,'s. More precisely, the collision
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This condition is quite strong since in many cases it forces the H-ys to
commute almost surely with Hef{. In particular, the stationnary distribution
obtained from this stochastic evolution may be any function of H and not
necessarily the Fermi distribution! In addition, it is not always possible to
describe the outcome of the collision on the density matrix through a
Hamiltonian formulation (cf. Section 2.5 III). Thus it is better to abandon
the Schrodinger point of view and adopt the Heisenberg point of view of
observables and states. Namely, we will introduce a C*-algebra of observ-
ables «£/ on which states are acting as positive linear forms. The density
matrix will be represented by such a state. The quantum evolution is no
longer described by unitaries, but by automorphisms of this algebra.
However, it is still possible to describe kicks easily by introducing at times
?/'s a sudden automorphism modifying instantly the instantaneous state
describing the system. This will be done in Section 2.2.

1.4. Bloch Theory for Aperiodic Media

It turns out that in many cases a perfect crystal is a rather bad
approximation to describe the impurity scattering. This is what happens for
lightly doped semiconductors at low temperature, whenever the current is
carried by the impurity band.(52) The effective Hamiltonian is closer to an
Anderson type model at high disorder than to the one of a perfect crystal.
This is also the case for quasicrystals for which there is definitely no
translation invariance left so that there is no chance to use efficiently Bloch
theory. Other systems like amorphous materials may require a special
description, too.

In these cases, it is better to replace Hefr by the one-particle
Hamiltonian describing independent particles in such an aperiodic medium,
so that impurity scattering is treated exactly without any approximation.
The kinetic model that we have designed previously can be used again, but
the collisions now concern every collision processes other than the impurity
scattering. Therefore our model is more accurate if the other sources of dis-
sipation can be considered as perturbations.
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term should enforce the thermal equilibrium if no external forces are
present. This leads to the requirement that the equilibrium density matrix
p, given by the Fermi function p = /yS>^(//efr) where /?= \/kBT and // is the
chemical potential, should not be changed in the average before and after
a collision. More precisely, if E w denotes the expectation value with respect
to the f-F-distribution,



Even though Bloch theory does not apply, these crystals are macro-
scopically translation invariant. This can be expressed in terms of
homogeneity.(7§9) Let us describe the formalism whenever the system under
consideration admits an underlying translation invariant lattice (such as it
is for doped semiconductors). The Hilbert space 3C of quantum states is
usually isomorphic to the /2-space of the lattice, possibly tensorized with
C* for some p if one includes several bands or spin. Hence we place ourself
at the thermodynamic limit from the very beginning. Then, the effective
Hamiltonian gives rise to a family (Hm)msa of (bounded) selfadjoint
operators indexed by a parameter a> representing the possible configura-
tions of disorder. It has been shown that the set Q of such parameters has
a natural structure of compact metrizable toplogical space.'7'9) Moreover,
the translation group acts in a natural way by means of a group of
homeomorphisms. At last, this family satisfies two properties:

1. the map ca i—»Hm is strongly continuous;

2. if U(a) is the unitary representing the translation a in the Hilbert
space and if Ta is the homeomorphism representing the action of a in Q,
then

In other cases (impurity bands in doped semiconductors, quasicrystals,
amorphous systems), the description is more involved and requires the use
of a groupoid (see refs. 13, 18, and 43 for the case of a quasicrystal). We will
not consider this case here, but the extension of our approach is
straightforward.

The observable algebra jtf is the C*-algebra defined by the family
(//co)(U6fl. In general, jaf is not abelian, it is not even of type I (namely, the
tensor product of an abelian C*-algebra by a matrix algebra). It is however
possible to describe this algebra without reference to any Hilbert space
(see Section 2.1). For a perfect crystal, this construction leads to the
algebra ^(B)®JiT where Jf is the algebra of compact operator (i.e., the
C*-algebra generated by the finite dimensional matrices) and B is the
Brillouin zone, namely the group dual to the translation group.'7'9) In this
sense, one can see si as the non-commutative analog of the Brillouin zone
(NGBZ). It turns out that, given any u>eQ, there is a ""-representation nm

of j?/ in 3P such that for Aejtf, nm(A) satisfies the strong continuity and
the covariance conditions. In addition there is H=H*estf such that
Hm = n(0(H).

This analogy goes along with the geometry of this NCBZ, namely one
can integrate and differentiate observables with respect to quasimomenta.

998 Schulz-Baldes and Bellissard



The integral of A is given by the trace per unit volume of nm(A). This
requires the data of a probability measure P on Q which is translation
invariant and ergodic. Then:

1.5. Main Results

Our first result, after having defined the kinetic model, will be the
derivation of Kubo's formula.

Theorem 1. Let !£H be the operator i[H,. ]//; acting on stf. The
conductivity tensor at frequency ca, inverse temperature ft and chemical
potential p, is given by (/, j= 1,..., d):
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where A is a sequence of boxes of finite volume \A\, and Tr^ is the trace
of the restriction to A of the operator inside the brackets. There is also a
set of *-derivations (9,-)f=, (where d is the dimension of the underlying
lattice), generalizing the <3/3&,'s of the Bloch theory, defined in such a way
as to give

where X{,..., Xd are the components of the position operator. This
framework is the proper generalization of Bloch theory whenever the
underlying system is homogeneous, but not microscopically translation
invariant.

provided the operator (1 -K*)/T + S£H-i& be invertible (see Section 2 for
more details) and the various derivatives exist.

The RTA now consists in replacing the operator (1 —K*)/T by l/rrel.
Note that in practice, rrel depends upon the temperature in a non trivial
way.

As an illustration, let us consider the periodic case within a one-band
approximation. Then jtf = C(Trf). He C\1d) is given by the function E(k),



which is the usual Drude formula in the form obtained by semi-classical
analysis/16'4)

If p bands are needed, sf = C(Td)®Mp(C). H becomes a.pxp self-
adjoint matrix valued smooth function H(k) on Td. Let E^(k) < • • • < Ep(k)
be the corresponding eigenvalues, notably the band functions. Let us
assume, for simplicity, that no pair of bands is touching (but they may
overlap) and let Pr(k) be the eigenprojection corresponding to Er(k), then

Note that interband transitions are taken into account. This is ignored in
the semiclassical approach [ref. 4, Chapter 12]. See ref. 6 for an application
to 2D Bloch electrons in a magnetic field.

The effects of quantum interferences in a disordered or quasiperiodic
potential on the motion of an electron can be characterized by diffusion
exponents.'25-23'38'41'12'32>45'27>51) Diffusion exponents characterize the
behavior of the Kubo formula in the zero dissipation limit rrei -> oo. Let us
summarize the main results contained in refs. 12 and 51 about these
exponents. Let A c R be a Borel subset considered as a spectral subset of
the energy space. Let 17^(4) be the associated spectral projection of the
Hamiltonian Hm = nm(H). The diffusion exponent crdifr(z)) measures the
growth of the matrix elements of the disorder averaged mean square dis-
placement operator
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ke1d, and J(k) = ^E(k)/h. Moreover, y(A~) = \^ddk A(k)/(2n)d. The
RTA conductivity tensor is given by



If Hec£l(stf) (namely the set of differentiable elements of si/), the diffusion
exponent takes values in the interval [0, 1] and the state |0> in (8) may
be replaced by any other state </>e£1(Zd).(5l} The motion is called ballistic
whenever crdiff(J) = l. This is what happens for a periodic Hamiltonian.
The motion will be called diffusive if o-din(J) = 1/2. An example of diffusive
motion is Wegner's «-orbital model.(60>31>51) A diffusive behavior is expec-
ted, but not yet proved, in the Anderson model in d ̂  3 at low disorder
and at energies near the band center. Localization is characterized by
<5A^(0<oo(10>11) which implies aAW(A) = Q (but the converse is false'451).
Localization holds in the Anderson model for d = 1, and at any d on band
edges or at high disorder (see ref. 2 and references therein). If 0 <am(A) <
1/2, the motion is called subdiffusive, whereas for 1/2 «7di(r(/J) < 1 it is
called overdiffusive. There are numerical and analytical evidences for
anomalous (over- or sub-) diffusion in quasiperiodic structures.'25'55'41'37'

Variants of the formula below already appeared in refs. 12, 38, 49 and
54, a proof in the present formalism is given in ref. 51.

Theorem 2 (Anomalous Drude formula).'12'51) The isotropic
direct conductivity a = £ f,,, at zero frequency of a homogeneous electron
system given by (7) satisfies (with /?< oo fixed)

Remark 2. For a ballistic motion, CTdiff= 1, (10) leads to the usual
Drude formula. More generally, for <rdi(r> 1/2, dissipation lowers the wave
packet velocity so as to give a classical diffusion at large times. As the
dissipation is removed, the conductivity increases and diverges, namely
the system behaves like a conductor. On the opposite, for CTdiff< 1/2, the

A Kinetic Theory for Quantum Transport in Aperiodic Media 1001

where Xm(t) is the time evolution of the position operator with respect to
//„. Here, if/is a measurable function, /(0~,|oo?a means

Remark 1. In most physical situations, temperature and relaxation
time are usually linked by a powerlaw relation rrel ~ ft" with ft > 0. Hence
the limit rrel -» oo should be taken together with the zero temperature limit.
One then expects the relation CT(/?,/*, Trel = y8a)~^°"2<7diff'/')"1) as /?->oo
where ffdm(^) is the diffusion exponent at the Fermi level.



interference effects slow down the wave packet, hence the conductivity is
enhanced by dissipation. So as the dissipation is removed, the conductivity
decreases to zero, namely the system behaves as an insulator. This is a
possible mechanism explaining why quasicrystalline materials such as the
AlCuFe are insulators at low temperature.'38* As adi!f= 1/2, the dissipation
just adds up to the quantum diffusion so that, as Trel -» oo, a residual
conductivity may remain.

Remark 3. In contrast with the absence of current whenever the
Hamiltonian is bounded and the dissipation is absent (see ref. 11 and
Proposition 6 below), the conductivity diverges in the limit zrel -> oo when-
ever ffdiff(yu)> 1/2. It shows that the limits of small dissipation and large
volume (or large measurement time) do not commute (see for instance
ref. 57, Section 3.1).

Let r\ be the spectral measure of the Liouville operator !£„ defined by:
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Its local spectral exponent a^(co) at co is defined by //([co + e, w — e])
~ea^) as e->0. Note that a,(0) = 2(1 -<7diir(R)).(51) The proof of the
following result is similar to the one of Theorem 2 in ref. 51 and is omitted.

Theorem 3. For the electric conductivity at fixed frequency at and
temperature ft < oo, the behavior in the zero dissipation limit is

2. QUANTUM TRANSPORT IN APERIODIC MEDIA

2.1. The Noncommutative Brillouin Zone

In order to fix notations, we briefly review from refs. 7, 9, 11,
and 51 the mathematical description of independent charged particles in
homogeneous media as motivated in Section 1.4. Let us consider first the
case for which there is only one band and no spin. Then we will indicate
how one can describe the case for which several bands and the spin may
enter into this mathematical framework.

The underlying crystal will be identified with Zrf with d=l,2, 3,.... In
the tight binding representation,'7' the one-particle Hilbert space describing
the electronic quantum states is ^f = f2CLd}. The position operator
X=(Xi,..., Xd) is defined by XJ^(n) = nJ\li(n), i/'eJf. If there is a magnetic



define a projective unitary representation of the translation group 2,d on 3f.
The one-particle Hamiltonian H0 is a bounded selfadjoint operator on JC
which may or may not be translation invariant. Its hull Q is the strong
closure of the set { U(a) H0U(a)~l; aeZd}. We have proposed in ref. 7 to
call homogeneous the Hamiltonians with compact hull. For each coeQ, we
will denote by Hm the operator acting on 3f associated to co. The trans-
lation group acts on Q by homeomorphisms denoted by T" so that the
covariance relation holds
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field, it is given by an antisymmetric real matrix & = (BiiJ)iij=l ...d with
B, j = — Bjf. The magnetic translations

The C*-algebra of observable d is the algebra generated by the translated
of H0. It has been argued in ref. 7 that, under suitably mild conditions on
H0, s/ is given by the crossed-product of the action of Zd on Q through
the magnetic translations. Its construction goes as follows: we endow the
topological vector space ^K(Q x Zd) of continuous functions with compact
support on Q x Z,d with the following structure of * -algebra:

where A, Be ^K(Q x Zd), a)en,neZd and &.n A / = £,, 5,,«,/,.. For
coeQ, a representation of this *-algebra on 3f = S2(Zd) is given by

The representations nm are related by the covariance relation

Now Mil =supeoen \\nm(A)|| defines a C*-norm on ^K(Qx7.d} and the
observable C*-algebra stf = C*(Q x Zrf, 3d} is defined as the completion of
^K(Q x Zd) under this norm. Given a T-invariant, ergodic probability
measure P on Q, a normalized trace P on stf is defined by
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Using the bra-ket notations, let |«> be the unit vector in J*f supported by
neZd. For any increasing sequence (A,),eN of cubes centered at the origin,
Birkhoff's ergodic theorem implies

for P-almost all co e Q showing that &~ is the trace per unit volume.
For pe [1, oo), the Banach space Lp(jtf, ST} is the closure of $tf under

the norm \\A\\LP = (.9~(\A\P))1/P. If 7rGNS denotes the GNS representation of
ST on L\jtf, 9~\ L™(s4, &~) denotes von Neumann algebra 7rGNS(«K/)"
where " is the bicommutant. By a theorem of Connes,(11) L™($4, 3T] is
canonically isomorphic to the von Neumann algebra of P-essentially
bounded, weakly measurable and covariant families (A<0)oiea of operators
on Jf = /2(Zd) endowed with the norm

Consequently, the family of representations nm extends as a family of
weakly measurable representations of L°°(.s/, !7}. Moreover, the trace 5"
extends to Lco(stf, 2T} as a normalized trace.

Density matrices are positive elements p of /.'(.a?, ST} with y~(p) = n if
n is the particle density. Ll(stf, 2T} can be identified with the predual of
L°°(J/, y\ namely the linear space spanned by the set of normal states on
L00^,^).  Ll(^, ,^)+ will  denote the positive part of L\s/,  9~}. Any
t race preserving *-automorphism aeAut( j^)  acts  on Ll(s t f ,3~)  by
duality as y(pa.(A)) = &~(a*(p) A). In particular if ptstf r\Ll(, rf, 3~) then
**(p) = aL-1(p).

We will denote by & the convex set of linear operators on Ll(jtf, 3T}
preserving the positivity and the trace. We endow J5" with the weak
topology, namely the one defined by the seminormspp B(M") = |^"(Jf (/>) B}\
with  peLl (^ ,^ )  +  , ,T(p)  =  l  and  BeLx(^ ,  3~ \  \ \B \ \  <  1 .  Any  " -au to -
morphism of stf defines, by duality, an element of &.

The C*-algebra stf admits also a differential structure given by the
family of *-derivations ^ = (9lv.., dd) defined by

This family generates a ^-parameter group pk = exp{'£jkjdj}, k€ld, of
*-automorphisms.<7) Moreover, nm(dJA') = i[nm(A),Xj~\. We denote by
^(j^) the dense sub*-algebra of stf of differentiable elements A, namely
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such that djAestf for ally's, endowed with the norm \\A\\V\ = \\A\\ +
£, ||3y/4||. The following result is proved in ref. 47.

Proposition 1. Let // = //* be an element of ($'(•«/) and let LcR
be its spectrum. Then for any/£^2(R) , the operator /(//) belongs to
^'(^) and

We also have (see in particular ref. 48)

Proposition 2. Let H = H* be an element of ^ l ( , s / ) with spectrum
E <= R. Then

I. For any j = 1,..., d there exists a positive Radon measure w, on
£ x E defined by

The sum m = £/_, nij y is called the current-current correlation
measure/31'51'

where (/(£)-/(£'))/(£-£") is replaced by f ' ( E ) if E = E'.

Proof. The mapping (/ g) e C(£) x C(E] -> 3~(djHf(H) djHg(H)) e C
defines a positive and continuous bilinear form. By the Riesz-Markov
theorem'44' m),__,- exists and its mass is 3~(\djH\2).

For m, neN, using the Leibniz rule we get:

Thanks to Eq. (19) it gives
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Therefore, by linearity, Eq. (20) holds for polynomials and, by density, for
all differentiable functions.

We will set mt j = M,. jtn. Let us note that if Hm = H0 + Vm with H0 transla-
tion invariant and Vm commuting with X, these measures can be expressed
in terms of the 4-point Green's function (see ref. 51).

For a selfadjoint element H of jtf, we denote by !£H the operator acting
on si by

Let stH denote the commutative C*-algebra spanned by the continuous
functions of the Hamiltonian Hestf.  Then

Proposition 3. Let H=H* be an element of ^l(s/). Let jtfji be
the subspace of L\s£', 3T} orthogonal stfH.

1. ^H extends as a bounded anti-selfadjoint operator on L2(s/, 2T}
leaving stf^ invariant.

2. Let /, g be the restrictions to the spectrum of H of continuously
differentiable function on R. Then 3,/(//)e,s/^ for ally's, namely

By the Radon-Nykodym theorem, there exists a non-negative matrix
valued function M,,__,- eL'(R2, dm) such that

It is a bounded *-derivation of stf generating a one-parameter group of
•"-automorphisms called the time evolution. For a>eQ, the operator
Hto = nf0(H) acts on 3? and describes the physical Hamiltonian acting on
a lattice with disorder co. In particular, the current is given by the operator
J<a = qdXm/dt, notably by the Heisenberg equation of motion, Jm =
nj^q/h ^H). Hence the current can be seen as an element of j/ whenever
H is differentiable, namely



3. Let F be a bounded positive operator on L2(stf, 9~} leaving ,e/^
invariant and bounded from below on stf^ by y\ with y>0. Then the
operator r+^ — ica is invertible on stf^ for any a>eR.

4. Let r be a bounded positive operator on L2( jtf, 3~) bounded from
below by y\ with y > 0. Then the operator F + !£H — to) - / • $ has a bounded
inverse for any co e R and any Se Rd. This inverse is strongly continuous with
respect to /eRd.

Proof. Since H is bounded, its norm as an operator acting on
L2(j/, ^") by left or right multiplication is bounded by \\H\\. Therefore <£H
is bounded. An explicit calculation, using the trace property, shows that it
is anti-selfadjoint. At last, &„(//") = [//,//"] =0 V« ^0. Thus &„ leaves
jtfff invariant.

We note that 9~(djA) = 0 for all/s and A e r f . Using the Leibniz rule
and the trace property, it follows that ST(dj(Hm) H") = 0 for m ^ 0, n ^ 0.
Thus for any polynomial p, we get
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By density and thanks to Proposition 2, this is still true for / Lipshitz
continuous, namely djf(H)ejtfjj, and (23) follows.

Since both r and S£H — i& leave jtf^ invariant, so does their sum.
Since F^yl >0 on stf^ and since Z£H — i&> is antiselfadjoint, the real part
of the sum is bounded from below by a positive member, implying the
invertibility of r+^H-id).

We know that ^ is the set of infinitesimal generators of an
automorphism group pk. This automorphism group extends obviously as a
unitary group on L\stf, 2T}. Therefore, for all /eRd, /•$ is well defined
as an anti-selfadjoint (unbounded) operator on L2(jtf, 9~} with domain
defined through this unitary group. The same kind of arguments as before
show that  the operator  r+yH — i(b — /•$ has  a  bounded inverse.
Moreover, the strong continuity is a standard result of spectral
theory.(44)

If the fermion particles have spin or if several bands are needed to
describe the system around its Fermi level, stf must be replaced by
•j/®Mr(C), namely the C*-algebra of r x r matrices with entries in si. The
matrix indices represent both the spin and band indices. The new trace
includes the sum over the indices of the diagonal terms, while every other
result described above still holds.

H fixes the grand-canonical equilibrium state. If T is the temperature
and n the chemical potential, the grand canonical Gibbs states is given by



the Fermi-Dirac one-particle density matrix fptfl(H) = (l+e^(H ^) l,
where ft=l/kBT. Usually, n is fixed by the condition n = ^(fftift(H))
where n is the charge carrier density. Given any density matrix p as an
initial state, its one-particle time evolution is given by the Liouville-von
Neumann equation

2.2. A Model for Quantum Transport

The previous section was devoted to the description of a formalism
liable to describe systems of independant fermions. In this section, interac-
tions are taken into account through a phenomenological description of
dissipation similar to the one given in Section 1.2. This formalism will be
valid only if the interactions with other particles can be treated as a noise.
In this approach, a test particle evolves according to a Hamiltonian H e stf.
At random times, it is scattered in a random way. At this level of descrip-
tion the precise nature of the scatterer will not be important. Only the den-
sity matrix is modified instantaneously into another one. This collision pro-
cess should enforce the equilibrium. For this reason, we will demand this
collision process to leave the thermal equilibrium invariant if no external
force acts upon the system. More explicit models for the collision operators
will be given in Section 2.5.

These hypothesis are formulated more precisely as follows.

A The time evolution of the particle is governed by the Liouville-von
Neumann equation (24) with Hestf. External forces such as an electric
field may be added. At random times t,,leZ with t,<t,+ l, the particle is
scattered instantaneously.

B The time delays sl = tl — t,_l between two collisions are inde-
pendent random variables identically distributed according to the exponen-
tial law of rare events dt/r exp( — t/r). Hence the collision process is a
Poisson process/15' T is called the collision time.

C For each /e Z, the density matrix p of the system just before the
/th collison is transformed into %(p) just after the collision where (^/),eZ

This is the dual action of ^H on Ll(stf, &~). Let us point out that the
observable algebra of a quasicrystal constructed by the cut and projection
method is generally given by the C*-algebra associated to a groupoid(9>30)

and not necessarily by a crossed-product as above. However, all results of
this section extend to this case.
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is a sequence of independent, identically distributed, random variables with
values in J5" and common distribution p.

D The probability measure p on 3* is such that the element K * e J5",
defined as the weak integral /?* = \y dp(.W) Jf, preserves the Fermi-Dirac
distribution fptft(H). K* will be called the collision efficiency operator.

The probability space used here can be constructed as follows. The set
E0 = R + x & becomes a probability space if endowed with the er-algebra of
Borel sets and the probability dM0(s, 3f) = e\p-(s/T)ds/T<8>dp(tf'). Then
Ed is the cartesian product 5$ endowed with the product <r-algebra and the
product measures dMd(£) = ® /eZdM0(s,, JQ if £ = (s,, Jf/)/6 Z . The shift
S acts on Sd by S(sh ^/)/6Z = (•*/-!. -^ / - i ) /6z- It is a bimeasurable bijec-
tion leaving the probability Mrf invariant. Moreover, Md is S-ergodic. Here
S is a discrete time translation. Let g be the non-negative measurable func-
tion on Ed given by g((sh -#/)/6Z) = s0. The probability space E is then the
suspension of Sd by this map.(19) Namely one defines on the product
EdxR the maps 4,(lt) = (lt + s) and G(l t) = (Si t - g(?)) for ^eSd

and s, t e R. Then 0, defines a one-parameter group of bimeasurable bijec-
tions leaving the positive measure dMd®dt invariant. Moreover, G is also
a bimeasurable bijection leaving the positive measure dMd ® dt invariant.
Therefore the quotient space E = Ed/G obtained by identifying (£, /) and
G(£, t), endowed with the quotient <r-algebra E becomes a probability
space on which (f>s still acts as a bimeasurable bijection and preserving the
probability measure dM = dMd® (dt/g)i0yg-^. This gives the desired prob-
ability space (E, Z, dM) with a R-action </>. Using the standard results on
the suspension, dM is <^-ergodic.(19) The collision time tt is recovered as the
second coordinate of G~'(£, t), namely t, = t + sl + ••• +s, if />0 and a
similar formula for / ̂  0.

Given £, e E and using the assumption above, the instantaneous evolu-
tion of the density matrix between times t' and t is given by the operator:
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whenever / , ,_[ < f ' < / , . < • • • < ? , < ? < / / + , . This evolution operator
belongs to & and satisfies the following causality equations

together with the time-covariance condition



For any £e3 and peL\jtf, &~) + , U((t, t') p is continuous with respect to
/ and t' except possibly when they coincide with a collision time. Thanks
to the Birkhoff ergodic theorem and the time-covariance condition, the
time-average of the evolution coincides with the ergodic average:

Again the integral must be understood in the weak sense in 3F. That U
depends only upon the difference t — t1 is a consequence of the time-
covariance. Moreoever, the causality gives U(t + t')= U(t) U(t') provided
t ^ 0, t' ^ 0. In addition, the averaging smooths out the discontinuity in
time so that for peLl(^, 3T) + , p(t} = U(t)peLl(^, &~)+ is continuous
in time. So the averaged evolution gives a strongly continuous trace
preserving semigroup. The Laplace transform of the mean evolution can be
calculated explicitly as in refs. 11 and 24 and gives the generator of this
semigroup, namely (see Section 3.3 for the proof):

Proposition 4. The time-averaged evolution is governed by the
quantum Boltzmann equation

2.3. Kubo's Formula with a Dissipative Term

In order to get a non vanishing current with such a dissipative evolu-
tion, an external electric field must be added. In this section, only DC
electric fields are considered. AC fields are technically more involved and
treated in the Chapter 3, giving similar results. / will be assumed uniform
in space. In practical situations, however, the electric field may not be
uniform even at microscopic scales (due to Coulomb interaction, for
instance ref. 52). But then it is the superposition of a uniform external field

The right hand side of this equation is called the collision term and will be
denoted by — F(p).

In absence of external forces such as an electric field, the Fermi-Dirac
equilibrium distribution is a fixed point of the dynamics of (26). Depending
upon the explicit form of F, this dynamic may or may not have a unique
fixpoint. If there is a unique fixpoint, it may or may not be stable, that is
produce thermalization or the return to equilibrium.

for M-almost all £,

1010 Schulz-Baldes and Bellissard



and of a fluctuating one. The fluctuating field may be treated as an extra
potential in the Hamiltonian, with the cost of modifying the hull Q if
necessary and adding a field dependent term to the Hamiltonian H. So
that, in the worst case, the effective Hamiltonian becomes nJ.H^^ — qJlX
for  some H( / )es / .  But  the  mathemat ica l  d i f f icu l t i es  a re  exac t ly  the  same
as if the fluctuating field were absent.

Here is the main argument to derive Kubo's formula (see Section 3 for
the proofs). H is assumed to be in ^'(j/) in order that the current /be
defined in si (see Eq. (22)). Starting from a thermal equilibrium at time
t = 0, an external electric field / is turned on for t > 0. The generator of the
new evolution in j/ is ££H — q/hS • ^. The initial state is the density matrix
p(t = Q) = f^/j(H). The time-averaged current density becomes
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Thanks to Proposition 3, the current carried by the equilibrium state
vanishes and therefore we can subtract G = S &~(J(l/8) fptll(H)). This leads
to:

Because r(fft/J(H)) =0 = ^/(//3j/1(//)), the previous formula simplifies to
give

The linear coefficients a,t j(f$,n}, ',./'= 1 • • • d, of (JA/J_/)t with respect to the
electric field, define the conductivity tensor. The case of an oscillating exter-
nal electric field of frequency cb is treated in Section 3 and the following
result is proved in Section 3.3.

Theorem 4. If the inverse of F+ £fH — ia> contains $fpwfl(H) in its
domain, the conductivity tensor is given by the following Kubo formula:



Sufficient conditions for the Kubo formula to hold are given in Proposi-
tion 3. In particular, this is the case for the relaxation time approximation
(RTA) which consists in replacing F in (28) by a multiple of the identity
operator, namely

2.4. Discussion of the Model

Underlying the previous assumptions are three time scales Tscat«
7rei «Tmeas- In our model we have set Tsca, = 0 and rmeas = oo. Here rscat is
the typical time an electron or a hole (quasiparticle near the Fermi surface)

rrel is then called the relaxation time. Using the current-current correlation
measure m introduced in Proposition 2 and Eq. (28), we get:

Theorem 5. Within the RTA, the conductivity tensor is given by
(/, j =!,...,</):
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In the RTA, the error term due to the quadratic contribution in the
electric field can also be estimated from (27), provided H is sufficiently
smooth in jtf, namely

In the RTA, the relative size of this correction term with respect to the
Kubo formula can be estimated by qS'ar^/h where a is the lattice spacing,
giving a good measure of the effect of ^. This ratio is very small in practice:
for a typical electric field of 100 V/cm, a relaxation time of 10 ~13 s and a
lattice constant of aw lA, this ratio is of the order of 10~6. Actually, non
linear terms are not well described by such a model, so that this estimate
should not be considered too seriously for physical applications even
though it shows that the linear response theory is valid.



spends in the interaction radius of a scatterer. Tre, is the average time
between two collisions renormalized by the efficiency of the collisions to
lower current, whereas rmeas represents the typical time needed to measure
the current, namely the time over which we average the evolution.

Assuming Tscat = 0 is not actually a constraint. For indeed we can
think of the scattering process as switching on the interaction at time t,,
letting the system evolve until at time // + £/ the interaction can be safely
turned off. Here e, is of the order of T^, so that t, + e,<tl+l with a very
high probability. Therefore we can always define % such as to satisfy
U((t, + E,, t/) = exp(-e,3'a) y, and the Eq. (25) still holds.

The assumption C requires, however, that Tscat be small in order for
the particle to interact with one scatterer at a time and in order for
successive collisions to be stochastically independent. This is an important
assumption.

In order to give an order of magnitude of the ratio Tscat/Trel let us
consider an electron-phonon interaction in a metal. Using Drude formula,
Trei is typically of the order of 10~13s at 77 K.(4) On the other hand, Tscat

can be estimated by the quotient of the interaction radius and the relative
velocity between scatterers. A reasonable estimation of the interaction
radius is given by the wave length X of the acoustic phonons of energy kT
because they dominate the scattering process. For a velocity of sound of
the order of 103m/s, A % 5 ' 1 0 ~ 8 m / T with a temperature T given in
Kelvin. For T = 77 K, the interaction radius is thus of the order of 7 A. For
a relative velocity given by a Fermi velocity by 106m/s, rscat «7- 10~16s
at 77 K. The various time scales are well separated. Let us note that for
systems with flat bands (such as quasicrystals and their periodic
approximants<38)), the Fermi velocity may be significantly lower and hence
the interaction time correspondingly bigger. But the relaxation time is also
larger. In the quasicrystal AlCuFe, the mean free path computed from a
Drude formula is typically 30 A(38) to be compared with the 7 A for the
interaction radius. This is still qualitatively acceptable, but quantitative
deviations are expected.

We now turn to our hypothesis B asserting that the collision times are
Poisson distributed. This is a common hypothesis used to describe the
emission-absorption process in quantum mechanics. The relaxation time is
usually computed through a Fermi golden rule or as the inverse of the
imaginary part of the self-energy in Dyson's equation (see ref. 36, for exam-
ple). However, the above characteristic time usually depends upon the
initial state of the electron. In a metal, for example, formal perturbation
theory usually leads to a continuous function t(k) where k varies through
the Brillouin zone. At high enough temperature, however, we may replace
it by its average over the Brillouin zone. This is the argument leading to
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the RTA. It should also hold in quasicrystals at high temperature. At very
low temperature on the other hand, an infinite number of transitions must
be taken into account during the electron-phonon collision, leading to an
infinite number of collision times and making the operator F more
involved than in (26). Nevertheless, the exponential law may be replaced
by any probability distribution having a finite second moment.'49' In this
case, the process on the long run looks like a Poisson one with only a
renormalization of the relaxation time.

The exponential law has several nice mathematical properties. A
Poisson process is characterized as the only stationary counting process
satisfying the Markov property of having independent increments.05'
Furthermore, superposition of two Poisson processes with parameters T'
and T" respectively, gives again a Poisson process with parameter x
calculated by Mathiessen's rule:

In conventional models, this relation is used in order to add the phonon-
electron, the electron-electron and the impurity contributions in the
calculation of the relaxation time. In our approach, however, we have
already taken the impurity contribution into account in the electronic
Hamiltonian H.

At last, the measurement time should be large enough as to allow
the use of Birkhoffs theorem. This means that we exclude continuous
measurements to produce some loss of information. A typical ratio
Trei/Tmeas ~ 100 would require a measurement frequency not larger than
100 GHz. Beyond this frequency (laser pulses for instance), the measure-
ment would give information on the short time behaviour of the particle
only.

2.5. The Collision Term

The collision term in the quantum Boltzmann equation (26) is sup-
posed to describe the interactions of the gas of independent electrons with
the rest of the solid. As already pointed out in Section 2.4, it would be
desirable to use perturbation theory in order to calculate it and particularly
its temperature dependence from a fundamental Hamiltonian. Within the
model of this article, the collision term is restricted to be given as quotient
of some operator 1 — K* and a mean collision or disintegration time T. In
this section a few simple examples of models for /?* are described. They
may be of practical interest in some cases.

1014 Schulz-Baldes and Bellissard



(I) The Quantum Drude Model. Each collision forces the elec-
tron system to its equilibrium. More precisely, if p is the density matrix just
before the collision, it becomes
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just after the collision. So only collison times are random. If n is the charge
carrier density, the density matrix is normalized according to .J7(p) = n.
Thus the collision operator acts on an observable A e .<*/ by duality as

This implies /o°^ (A ) = 0 for any A e .e/jj go that Proposition 3 applies with
r= I/T.

( I I ) The Quantum Lorentz Model."" Let p be a Borel probab-
ility measure on the space Aut^) of *-automorphisms of ,«/ invariant
under the map £e Autf.c/) -> £"' e Aut(,s/). We assume also that p-almost
surely, £,(H) = H. For d;e Aut(.s/), Cf denotes the dual action of £, on the
space of density matrices, namely

C{ is the random operator of hypothesis C describing the elastic collision.
Obviously C( e &. The collision operator acting on ,«/ by duality is then
given by

It is a completely positive operator on si which extends as a selfadjoint
contraction of L\s#', 9~} such that KL(H") = H" for all n € N. In particular,
it leaves ,^^ invariant. If in addition the probability measure p is such that
the restriction to ,s/^ be bounded by K < 1, then Proposition 3 still applies.
This K is a measure of the collisions' efficiency to diminish current and the
relaxation time rrel is then estimated by r/(l —K). In realistic models both
r and K may depend on temperature. Let us give an example where K is
contractive on ,«/^.

Example. Let H be the discrete Laplacien on Z2. By Fourier trans-
form, the physical Hilbert space .iff can be chosen as L2(T2) where T2 is
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the 2-torus. The observable algebra is then stf = C(T2) acting by multiplica-
tion and the Hamiltonian is

It defines two open subsets of T2 by D± = {/ceT2 | 0< ±H(k)<4}. In
each of them the constant energy sets are diffeomorphic to a circle T. Since
T2 is symplectic, we get action angle variables (/, <t>) in D+ and in D_
such that dl A d(f> = dkl A dk2 and H(k)= ±h(I) when keD±. Here the
function h is defined by h(I} = E whenever f = \E<H(kt<4^i A dk2/2n
for 0<£<4. Therefore keD± \-> (/, </>) e (0, n) x T is a symplectic difleo-
morphism. Thus L2(T2) can be identified with L2(D + ) ® L 2 ( D _ ) , namely
JVSL2((0, n) x T) ® C2 and Ae.d acts as

where A±=A\D . Let /? be a continuous function on T such that
p(0) = l+g(0) with \d6g(0) = $ and W=-id/d<j>. Then the collision
operator is

It satisfies /c(j/^) c j/^ and, for A e ,a/^,

In particular, Proposition 3 applies if K = \ (dO/2n) \g(0)\ < 1.

( I l l ) Scattering Matrix Model.(50) This model is a quantum
analog of a model investigated by Kac(29) for classical systems. Let Jf be
the one-particle Hilbert space. As the collision process arises, the particle
suddenly finds itself coupled to some thermal bath described through a
one-particle Hilbert space J^. The total Hilbert space becomes Jf ® M^
during the scattering. As long as the interaction between the particle and
the bath can be neglected, the total Hamiltonian will be H + //B where HB

is the Hamiltonian of the bath particles. A scattering unitary matrix S,
commuting with the asymptotic Hamiltonian H+ //B, describes the output
of the collision process. Before the collision the density matrix of the bath
is the equilibrium state p^ at inverse temperature /? whereas the particle



one's is p; we get a total density matrix p®p^- Thus after collision the
density matrix becomes Sp®p^S*. After the collision the bath variables
are integrated out by taking a partial trace leading to a new particle state

3. AC CONDUCTIVITY

In this chapter, the previous results are extended to time-dependent
electric fields. All results contained here hold for constant electric field as
well, by assuming that / is constant in time. Therefore this chapter can be
considered as the set of technical proofs of results claimed before. In
Section 3.1, the evolution of observables in such a field is constructed. The
method is standard in the theory of ordinary differential equations and is
adapted to C*-algebras here. In Section 3.2, the Floquet theory is adapted
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When applied to Bloch electrons or holes, the corresponding quantum
Boltzmann equation (26) is precisely the linear Boltzmann equation if the
matrix elements of S are properly identified with the scattering cross
section and .^ is the trace per unit volume. Although possibly fruitful for
the study of metals and alloys, this approach has however several incon-
veniences.

First of all, it does not take into account the constraints due to the
Fermi-Dirac statistics. This problem can be overcome by the Uehling-
Uhlenbeck proposal. The electron can only be scattered from an occupied
state to an empty one. Thus the correct form of the whole collision term
should be:

where e equals — 1, 1 or 0 depending upon whether the particles of the bath
are fermions, bosons or classical particles; furthermore, p^ is the corre-
sponding Fermi-Dirac, Bose-Einstein or Boltzmann equilibrium state of
the bath.

More seriously, the observable algebra of the coupled system particle-
bath in the infinite volume limit has not been described. The S-matrix
should leave it invariant. Moreover, the partial trace should be such as to
map the coupled observables into the original one-particle observable
algebra. This problem has not been solved yet and this approach will not
be developed in this paper.



to C*-algebras. In Section 3.3 the Kubo formula for the optical conduc-
tivity at frequency a> is proved.

3.1. Evolution with a Time-Dependent Perturbations

The motion of a particle with Hamiltonian H=H*ejtf submitted
to an external time dependent electric field, namely a continuous map
t e R -> S(t) e Rd is described by the Heisenberg equation of motion,
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For H=0 and q/(t)/h = l, this equation is solved using /9^=exp(£-^)
where keRd. According to the definitions of Section 2.1 and Eq. (18), it is
a (/-parameter group of pointwise norm continuous *-automorphisms of stf.
By construction, this group is 2nLd periodic in k, so that £ can be
considered as an element of 1d. The following result is elementary so that
the proof will be left to the reader.

Proposition 5. For H = 0, the Heisenberg equation of motion (35)
admits the following solution

where '&(t,t') = —q/h \'t, dsS(s). This evolution is a family of pointwise
norm continuous *-automorphisms of sf with respect to t, t'. It is causal,
namely p^(l< n = p#(li np^(t-t n, W, t', t" e R and p#(tt t} = id, W e R.

If H is non zero, a solution A(t) of the Heisenberg equation (35) with
initial condition A(t0) = Aes/ is written in the form A(t) = p&(tt^(B(t)) so
that B(t0) = A. Inserting in Eq. (35) and integrating between times /' and
t, B satisfies

where H(t) =p^(\^(H\ so that \\H(t)\\ = \\H\\, V^eR. Iterating Eq. (36), as
in a Dyson expansion, we get



The remainder is dominated by \\RN\\ ̂ (2N(t-t')N/N\) \\H\\N sup,^, \\B(s)\\.
This estimate shows that two solutions B^t) and B2(t) such that B^t') = B2(t')
actually coincide, namely there is a unique solution with a given initial data.
Moreover, it also shows that the Dyson expansion, obtained from (37) by
letting N -> oo, converges for any t' < f eR. Let us write the solution in the
form B(t) = fj,t,.(B(t')) where fj,i(. corresponds to the infinite sum appearing
in Dyson's expansion. It is clearly a bounded linear operator on stf. Setting

tl,,,- = P4(,,,a)°iit,,'0P0(,,lo)-1 we 8et

Theorem 6. If H = H* erf and if <f(t) is a continuous function
from R into Rd, the Heisenberg equation of motion (35) admits a unique
solution in the form
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where r], ,• is a *-automorphism of stf, norm pointwise continuous with
respect to t, t' e R. Moreover the family rj is causal, namely

1. r\,,t = id for all /eR

2. tit,,' = lit, t" ° Ir, t- f°r all /, t', t" e R

If in addition / is periodic in time of period f, then rjt + f ,, + f = t]t<l. for all
t, t' e R.

Proof. We only need to prove that the same properties hold for the
/7,,/s. It is a family of *-automorphism of sf because ^/(() is a family of
bounded *-derivations of s/. For indeed, if B^t) and B2(t) are two solu-
tions of Eq. (36) with initial conditions B l ( t ' ) = Bl and B2(t') = B2, then
B i ( t ) B2(t) is also a solution with initial conditions B^t') B 2 ( t ' ) = B1B2,
Thanks to the uniqueness of the solution, fj,tt'(BlB2)=fj,tt:(Bl)fj,,,(B2).
The continuity of fjtit, with respect to t, t' is obvious from Eq. (37).
Causality follows from the uniqueness theorem. At last, if / is /-periodic,
shifting both the initial and the final time by t does not change the equa-
tion, so that the uniqueness leads to tjl+/•,,' + /• = >/,,,•.

3.2. Floquet's theory

In this section, /(t) = E(d — cat) where £ is a continuous function of
0eT = R/27iZ, with values in Rrf, and H = H*ed. Let r\et t, denote the
corresponding evolution defined as in Theorem 6. Floquet's theory can be
developped in very much the same way as in Howland(26) and Yajima(61)

for Hilbert spaces.
Let ^ be the C*-algebra of continuous functions B: 0eTt-> B(0)e stf

endowed with the sup-norm ||B||^ =supe<ET \\B(B}\\^. Hence ^ = ^(T)®<s/



as C*-algebraic tensor product.'46' The evolution r]^ t, satisfies ty?+jfj-+s = t]e,t ,•
for s e R. We introduce the map C* acting on 3$ by
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where s e R and B e 3d. We denote by 3, the ""-derivations on Si given by
d0B(0) = dB(6)/d8 whereas (djB)(0) = dj(B(d)) for j=\,...,d. <#\3S) will
denote the common domain of these d + 1 derivations.

Theorem 7. The family (£,)J6R defined in Eq. (39) is a one-param-
eter group of norm pointwise *-automorphisms of 3d. Its generator coincides
on^'(^) with (-^H + (]/hE(0).^-(od0).

Sketch of the proof. Thanks to Theorem 6, £S(B) is an element of ^
whenever Be38. A tedious but elementary calculation shows that (,„ is a
*-homomorphism such that Co = id and £J(+ij = £Sf °£S2,Vsi,s2G R. Thus we
get a one-parameter group of ""-automorphisms. The norm pointwise con-
tinuity is based upon Theorem 6 and a 3e-argument. The explicit computa-
tion of the generator comes from the definition (39) and the Heisenberg
equation of motion.

88 admits a normalized trace defined by

By dua l i ty  the  space  Ll (38 ,^ )  i s  made  of  measurab le  maps  p :  0eTi ->
p(9}eL\jtf,2T} such that 3~(\p(0}\) is integrable over T. The evolution
dual to C is defined by p(s) = C,_s(p) whenever y5e^nL'(^, $"} and
extended in a unique way to Ll(38, 3~). Since ( is a group of ""-auto-
morphisms of J1, this evolution leaves the subset of density matrices
invariant. Let us consider a density matrix p0 over stf'. Its evolution in time
is given by duality by /', = (>/f>o)~1 (Po) = rlBo,,(Po)- The averaged current is
therefore given by je(t) = 3~(r\B$it(po) J). It is a continuous function of
d e T. Therefore one can consider its time averaged n th Fourier component
defined as

As in Section 1.1 and Eq. (2), we get a no-go theorem in absence of dissipa-
tion, namely



Proposition 6. Let E(6) be a continuous function on T with
values in Rd and let Sn be its n-th Fourier coefficient. Then En]_n(a>) = 0
for all n's.

Proof. Let <?„ be the function 0eTi-»exp(;n0)eC. An elementary
calculation leads to

3.3. Kubo's Formula for the Optical Conductivity

In this section, Kubo's formula (28) is derived rigorously and Proposi-
tion 4 and Theorem 4 are proved. As before, at time t = 0 the system with
Hamiltonian H = H*e(£l(jtf) is in the equilibrium state p0 = fpitl(H).
Then for />0 an electric field /(/) = £(# — a>t) periodic in time is turned
on. In particular, it can be constant in time. The average evolution of the
current (or the state) will be computed. By average we mean both the ther-
mal and the ergodic average. The linear response of the current at large
times to the electric field / gives the conductivity.

Since H is a smooth element of jtf and/^ is a smooth function, p0

belongs to Lp(stf, ST} for all />> 1. In particular, it will be convenient to
consider it as an element of L2(stf, 2?~}. Then every ""-automorphism of .«/
extends to L?-(stf, ST} as a unitary operator; so do U(-g(t, t') and r/6,*,. By
assumption D in Section 2.2 we also know that the collision efficiency
operator K* must leave p0 invariant. By construction it is a positivity and
trace preserving operator acting on Ll(stf, 3~}. For purely technical con-
venience, we will restrict these assumptions here as follows

D' The collision efficiency operator K* defines a bounded operator
on L2(^/, 5") leaving the subspaces j/^ and its orthogonal invariant.

A Kinetic Theory for Quantum Transport in Aperiodic Media 1021

On the other hand it is simple to check that

Averaged over t' between — t and t, the left hand side is dominated in norm
by 2 \\H\\lt. This gives Z«ez^J-«(w) = 0. The same is true also if E(0) is
replaced by E(9 + q>). Then it is tedious but straightforward to check that
]"„((£>) does not change, whereas En is multiplied by exp(w^). Since <p is
arbitrary in T, the proposition is proved.
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According to the assumptions made in Section 2.2, the thermal
average of the current at time t is given by

whenever t0 = 0 < ?t < • • • <t,<t<t,+ l. Here, # ,* is the adjoint of %. As
before, the «th Fourier coefficient of this current with respect to the phase
9 of the electric field gives the response at frequency ma. Multiplication of
both sides of Eq. (41) by exp( — mO) followed by an integration over 0 gives

We need to average this quantity over both collisions and time. A well-
known tauberian theorem(44) asserts that the time average can be obtained
as the limit

Hence we need to compute the Laplace transform of / 4 n (0- It can be
decomposed as follows:

Each term of the sum must be averaged over £. Averaging over the collison
operators ^j*'s consists in replacing them by K. Averaging over the time
delays T,. = tj— tj_i can be done by using the formula

where the operator ya — q/hE'^ + d0 is the anti-selfadjoint generator of
£_,, seen as acting on L2(jtf, ^"). We also need the integral



Due to Proposition 3, as E -> 0, the term q/hE • $ in the denominator can
be ignored modulo an error of order E2. At last, E can be decomposed into
its Fourier components so that only the «-th one survives inside the trace
due to the integration over 6. Then the limit d \ 0 can be taken. This leads
to ~]n(d = Q)-a(f},n,ncb)En with the matrix a given by the Eq. (28) in
Theorem 4.
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